Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell Struct Funct ; 47(1): 43-53, 2022 Jun 25.
Article in English | MEDLINE | ID: covidwho-1910415

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has threatened human health and the global economy. Development of additional vaccines and therapeutics is urgently required, but such development with live virus must be conducted with biosafety level 3 confinement. Pseudotyped viruses have been widely adopted for studies of virus entry and pharmaceutical development to overcome this restriction. Here we describe a modified protocol to generate vesicular stomatitis virus (VSV) pseudotyped with SARS-CoV or SARS-CoV-2 spike protein in high yield. We found that a large proportion of pseudovirions produced with the conventional transient expression system lacked coronavirus spike protein at their surface as a result of inhibition of parental VSV infection by overexpression of this protein. Establishment of stable cell lines with an optimal expression level of coronavirus spike protein allowed the efficient production of progeny pseudoviruses decorated with spike protein. This improved VSV pseudovirus production method should facilitate studies of coronavirus entry and development of antiviral agents.Key words: severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, pseudovirus, vesicular stomatitis virus (VSV), spike protein.


Subject(s)
Spike Glycoprotein, Coronavirus , Vesicular stomatitis Indiana virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/biosynthesis , Vesicular stomatitis Indiana virus/metabolism
2.
Virol Sin ; 37(2): 248-255, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1616811

ABSTRACT

Severe acute respiratory syndrome (SARS) is a highly contagious zoonotic disease caused by SARS coronavirus (SARS-CoV). Since its outbreak in Guangdong Province of China in 2002, SARS has caused 8096 infections and 774 deaths by December 31st, 2003. Although there have been no more SARS cases reported in human populations since 2004, the recent emergence of a novel coronavirus disease (COVID-19) indicates the potential of the recurrence of SARS and other coronavirus disease among humans. Thus, developing a rapid response SARS vaccine to provide protection for human populations is still needed. Spike (S) protein of SARS-CoV can induce neutralizing antibodies, which is a pivotal immunogenic antigen for vaccine development. Here we constructed a recombinant chimeric vesicular stomatitis virus (VSV) VSVΔG-SARS, in which the glycoprotein (G) gene is replaced with the SARS-CoV S gene. VSVΔG-SARS maintains the bullet-like shape of the native VSV, with the heterogeneous S protein incorporated into its surface instead of G protein. The results of safety trials revealed that VSVΔG-SARS is safe and effective in mice at a dose of 1 â€‹× â€‹106 TCID50. More importantly, only a single-dose immunization of 2 â€‹× â€‹107 TCID50 can provide high-level neutralizing antibodies and robust T cell responses to non-human primate animal models. Thus, our data indicate that VSVΔG-SARS can be used as a rapid response vaccine candidate. Our study on the recombinant VSV-vectored SARS-CoV vaccines can accumulate experience and provide a foundation for the new coronavirus disease in the future.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Immunization , Immunogenicity, Vaccine , Macaca mulatta , Mice , Severe acute respiratory syndrome-related coronavirus/genetics , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic/genetics , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/metabolism
3.
Viruses ; 12(12)2020 12 18.
Article in English | MEDLINE | ID: covidwho-1024652

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the most recent global pandemic that has caused more than a million deaths around the world. The spike glycoprotein (S) drives the entry and fusion of this virus and is the main determinant of cell tropism. To explore S requirements for entry under BSL2 conditions, S has been pseudotyped onto vesicular stomatitis virus (VSV) or retroviral particles with varied success. Several alterations to S were demonstrated to improve pseudoparticle titers, but they have not been systematically compared. In this study, we produced pseudotyped VSV particles with multiple modifications to S, including truncation, mutation, and tagging strategies. The main objective of this study was to determine which modifications of the S protein optimize cell surface expression, incorporation into pseudotyped particles, and pseudoparticle entry. Removal of the last 19 residues of the cytoplasmic tail produced a hyper-fusogenic S, while removal of 21 residues increased S surface production and VSV incorporation. Additionally, we engineered a replication-competent VSV (rVSV) virus to produce the S-D614G variant with a truncated cytoplasmic tail. While the particles can be used to assess S entry requirements, the rVSV∆G/SMet1D614G∆21 virus has a poor specific infectivity (particle to infectious titer ratio).


Subject(s)
SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vesicular stomatitis Indiana virus/genetics , Viral Envelope Proteins/genetics , Virus Replication , Animals , Cell Line , Cells, Cultured , Chlorocebus aethiops , Fluorescent Antibody Technique , Gene Expression , Genes, Reporter , Genetic Engineering , Giant Cells , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Vesicular stomatitis Indiana virus/metabolism , Virus Internalization
4.
J Virol ; 94(21)2020 10 14.
Article in English | MEDLINE | ID: covidwho-709870

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) Spike glycoprotein is solely responsible for binding to the host cell receptor and facilitating fusion between the viral and host membranes. The ability to generate viral particles pseudotyped with SARS-COV-2 Spike is useful for many types of studies, such as characterization of neutralizing antibodies or development of fusion-inhibiting small molecules. Here, we characterized the use of a codon-optimized SARS-COV-2 Spike glycoprotein for the generation of pseudotyped HIV-1, murine leukemia virus (MLV), and vesicular stomatitis virus (VSV) particles. The full-length Spike protein functioned inefficiently with all three systems but was enhanced over 10-fold by deleting the last 19 amino acids of the cytoplasmic tail. Infection of 293FT target cells was possible only if the cells were engineered to stably express the human angiotensin-converting enzyme 2 (ACE2) receptor, but stably introducing an additional copy of this receptor did not further enhance susceptibility. Stable introduction of the Spike-activating protease TMPRSS2 further enhanced susceptibility to infection by 5- to 10-fold. Replacement of the signal peptide of the Spike protein with an optimal signal peptide did not enhance or reduce infectious particle production. However, modifications D614G and R682Q further enhanced infectious particle production. With all enhancing elements combined, the titer of pseudotyped HIV-1 particles reached almost 106 infectious particles/ml. Finally, HIV-1 particles pseudotyped with SARS-COV-2 Spike were successfully used to detect neutralizing antibodies in plasma from coronavirus disease 2019 (COVID-19) patients, but not in plasma from uninfected individuals.IMPORTANCE In work with pathogenic viruses, it is useful to have rapid quantitative tests for viral infectivity that can be performed without strict biocontainment restrictions. A common way of accomplishing this is to generate viral pseudoparticles that contain the surface glycoprotein from the pathogenic virus incorporated into a replication-defective viral particle that contains a sensitive reporter system. These pseudoparticles enter cells using the glycoprotein from the pathogenic virus, leading to a readout for infection. Conditions that block entry of the pathogenic virus, such as neutralizing antibodies, will also block entry of the viral pseudoparticles. However, viral glycoproteins often are not readily suited for generating pseudoparticles. Here, we describe a series of modifications that result in the production of relatively high-titer SARS-COV-2 pseudoparticles that are suitable for the detection of neutralizing antibodies from COVID-19 patients.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/physiology , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/genetics , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , HEK293 Cells , HIV-1/genetics , HIV-1/metabolism , Humans , Leukemia Virus, Murine , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , SARS-CoV-2 , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/metabolism , Virion/genetics , Virion/immunology , Virion/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL